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Abstract

Chronic lead (Pb) exposure causes long term health effects. While recent exposure can be assessed 

by measuring blood lead (half-life 30 days), chronic exposures can be assessed by measuring 

lead in bone (half-life of many years to decades). Bone lead measurements, in turn, have been 

measured non-invasively in large population-based studies using x-ray fluorescence techniques, 

but the method remains limited due to technical availability, expense, and the need for licensing 

radioactive materials used by the instruments. Thus, we developed prediction models for bone lead 

concentrations using a flexible machine learning approach–Super Learner, which combines the 

predictions from a set of machine learning algorithms for better prediction performance. The study 

population included 695 men in the Normative Aging Study, aged 48 years and older, whose bone 

(patella and tibia) lead concentrations were directly measured using K-shell-X-ray fluorescence. 

Ten predictors (blood lead, age, education, job type, weight, height, body mass index, waist 

circumference, cumulative cigarette smoking (pack-year), and smoking status) were selected for 

patella lead and 11 (the same 10 predictors plus serum phosphorus) for tibia lead using the Boruta 

algorithm. We implemented Super Learner to predict bone lead concentrations by calculating 

a weighted combination of predictions from 8 algorithms. In the nested cross-validation, the 

correlation coefficients between measured and predicted bone lead concentrations were 0.58 for 
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patella lead and 0.52 for tibia lead, which has improved the correlations obtained in previously-

published linear regression-based prediction models. We evaluated the applicability of these 

prediction models to the National Health and Nutrition Examination Survey for the associations 

between predicted bone lead concentrations and blood pressure, and positive associations were 

observed. These bone lead prediction models provide reasonable accuracy and can be used to 

evaluate health effects of cumulative lead exposure in studies where bone lead is not measured.

GRAPHICAL ABSTRACT
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1. Introduction

Lead exposure and related health and societal effects remain a significant public health 

concern in the United States and globally. Since the 1970s, primary preventative initiatives 

such as the removal of lead from gasoline and lead solder from food cans have 

considerably reduced environmental sources of lead (Pirkle et al., 1994). Nonetheless, the 

general population has been exposed to lead through various sources, including ambient 

air, smoking, drinking water, and food (Frank et al., 2019). Furthermore, lead from 

environmental exposures can accumulate in the body, notably in bones, for decades. Bone 

lead levels have been shown to be associated with cross-sectionally and prospectively with 

adverse health consequences including cardiovascular disease, neurodegenerative disease, 

and mortality in aging populations (Bakulski et al., 2020; Lanphear et al., 2018; Navas-

Acien et al., 2007).

Blood lead concentration has been the primary biomarker used to quantify lead exposure 

in biomonitoring programs, screening and diagnostic processes, and epidemiologic studies. 

However, blood lead reflects, for the most part, recent lead exposure due to its short half-life 

of approximately 30 days. Cumulative lead exposure, on the other hand, is more relevant 

than recent exposure for assessing the lead effects on chronic health outcomes (Hu et al., 

2007). Once lead enters the body from external environmental exposure, circulating lead in 

the blood is deposited into multiple bone sites, where it has a half-life on the order of years 
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to decades (Wilker et al., 2011). In adults, bone lead accounts for more than 95% of the 

total lead body burden (Barry and Mossman, 1970), rendering bone lead a better indicator 

of cumulative lead exposure. Bone lead can be assessed with the noninvasive K-shell X-ray 

fluorescence (KXRF) technique (Hu et al., 1995). Several studies have reported associations 

of bone lead concentrations as measured by KXRF with a series of chronic health outcomes 

(Ding et al., 2018,2016; Park et al., 2010; Payton et al., 1998; Weisskopf et al., 2009). 

However, logistical challenges including the cost and technical expertise required to operate 

KXRF, licensing issues for the use of radioactive materials, and participant burden (travel, 

measurement time, radiation exposure) have often precluded the bone lead measurement as 

an exposure indicator in large population-based studies.

Advances in prediction modeling using modern machine learning algorithms have paved 

the way for essential applications in environmental exposure assessment (Di et al., 2019; 

Verner et al., 2015). Park et al. developed a prediction model for bone lead concentration 

using linear regression where a set of bone lead determinants including blood lead and 

other demographic, socioeconomic, and clinical variables were incorporated (Park et al., 

2009). This model imposed stringent assumptions on the association between bone lead 

concentrations and its predictors, such as linear and additive relationships. Given the 

complexities of predicting bone lead concentrations, such assumptions may be violated, 

limiting prediction performance if the model is incorrectly specified—hence, a more flexible 

modeling option would be favored.

The goal of this study is to develop and validate an updated prediction model for bone lead 

concentrations (patella and tibia) using a more flexible machine learning approach, namely 

Super Learner (Van der Laan et al., 2007), which combines the predictions from a set of 

individual machine learning algorithms to yield a final ensemble of prediction function that 

has been proven to be asymptotically as accurate as of its best possible component algorithm 

across different settings. We used data from the Normative Aging Study (NAS) where 

KXRF-assessed bone lead and potential predictors of bone lead are available. In addition, we 

evaluated the applicability of this prediction model by examining the associations between 

predicted bone lead concentrations and blood pressure in the National Health and Nutrition 

Examination Survey (NHANES).

2. Materials and methods

2.1. Study population

The NAS is a prospective cohort study of community-dwelling men with no known 

occupational lead exposure (Hu et al., 1995). In 1961 and 1962, 2280 men aged 21–80 

years were enrolled from the Greater Boston area. All participants were free of any chronic 

medical conditions at the time of enrollment, including heart disease, cancer, diabetes, peptic 

ulcer, gout, bronchitis, sinusitis, recurrent asthma, or hypertension. Participants returned 

for regular examinations approximately every three to five years. At each clinical visit, a 

thorough physical examination was conducted, and blood specimens for routine clinical 

analysis and for blood lead assay, and information on medical history and other aspects that 

might impact health were collected. Between 1991 and 2002, a subset of 871 participants 

underwent patella and tibia bone lead measurements using KXRF. Bone lead concentrations 
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were measured at a one-time point within approximately six weeks of a clinical visit. For 

the current study, we excluded 9 participants with high bone lead concentration uncertainties 

(> 15 μg/g for patella lead, and >10 μg/g for tibia lead), and 167 participants with missing 

information on bone lead predictors, yielding a final analytic sample of 695 men for building 

the bone lead prediction models.

2.2. Bone and blood lead measurements

Bone lead concentrations were directly measured at two bone sites, the patella and mid-tibial 

shaft, using a KXRF instrument (ABIOMED, Danvers, MA, USA), as described in detail 

previously (Hu et al., 1995). The patella is nearly entirely made up of trabecular bone, 

whereas the mid-tibia is made up of cortical bone. Lead accumulates faster in trabecular 

bone, with a half-life of a few years, compared to cortical bone, which has a half-life of 

decades (Wilker et al., 2011). As a result, tibia bone lead has often been seen as a biomarker 

of lifetime cumulative lead exposure, while patella bone lead has been recognized as more 

current, mobilizable lead reserves. The KXRF provides unbiased estimates of bone lead 

concentrations, expressed as μg of lead per g of bone mineral (μg/g). Negative values can be 

returned by the KXRF when the bone lead concentrations are close to zero. All the values, 

including the negative ones, were retained in the construction of bone lead prediction models 

(Park et al., 2009). KXRF also derives an estimate of the measurement uncertainty that 

reflects the variance both in the X-ray signal and in the background underlying the signal, 

and it is equivalent to the standard deviation one would expect from multiple measurements. 

Participants with high bone lead concentration uncertainties (>15 μg/g for patella lead, and 

>10 μg/g for tibia lead) were excluded because these measurements usually reflect excessive 

participant movement during the measurement or a degraded signal of X-ray (Aro et al., 

1994). Whole blood samples were obtained from venous blood draw into trace metal-free 

tubes containing ethylenediaminetetraacetic acid. Blood lead concentration was determined 

using graphite furnace atomic absorption spectroscopy (ESA Laboratories, Chelmsford, 

MA, USA). The limit of detection (LOD) for blood lead was 1 μg/dL. Less than 1% of 

participants had blood lead concentrations below the LOD, and these values were imputed 

with the LOD divided by the square root of two.

2.3. Predictor selection

A total of 17 candidate predictors was initially included as shown in Table 1 based on 

their determinant roles and data availability (Park et al., 2009). Health conditions, such as 

blood pressure and disease diagnosis, were not included in this list because the previous 

study found that using predicted bone lead concentrations from these variables would lead to 

inflated significant results when examining the associations with the related health outcomes 

(Park et al., 2009). We next employed the Boruta algorithm (Kursa and Rudnicki, 2010), 

a novel variable selection approach, to select the most important predictors for patella and 

tibia lead concentrations, respectively. An initial step screening often improves prediction 

if signal to noise ratio is not high. The Boruta algorithm is an extension of the random 

forest algorithm and selects important variables by comparing the importance of variables 

with the shadows (permutations) of those variables, which performs well across various 

variable distributions and provides a subset of all the independent variables for a given 
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regression task rather than minimal subsets specified to different algorithms. Briefly, this 

process consists of the following four steps:

1. Create random permutated copies of real variables, which are called shadow 

variables.

2. Fit the random forest on the entire data, including both real and shadow 

variables, and compute the z-scores of importance of each variable (the 

difference in the average absolute error of the random forest models with and 

without this variable).

3. Compare the mean z-scores of the variable importance between real and shadow 

variables and remove the real variables with significantly lower z-scores than the 

highest shadow variables.

4. Repeat the iterations until all variables are retained or removed or reach a 

specified limit of random forest iterations (2000 in our study).

All variables retained in the Boruta algorithm were included as predictors in patella and tibia 

lead prediction models. Hereafter, we refer to these models as “full models.” We also built 

prediction models for patella and tibia lead based on a subset of seven predictors that are 

selected in the Boruta algorithm and widely available in population-based studies, including 

blood lead concentration, age, education, job type, body mass index (BMI), smoking status, 

and cumulative cigarette pack-years. We refer to these models as “reduced models.”

2.4. Construction and validation of prediction models

We implemented Super Learner, an ensemble machine learning algorithm seeking optimal 

prediction by calculating a weighted combination of predicted values from a collection of 

candidate algorithms (Van der Laan et al., 2007), to build bone lead prediction models. 

In our study, we utilized the following eight algorithms, including linear regression, 

generalized additive model (Wood, 2017), ridge regression (Hoerl and Kennard, 1970), 

least absolute shrinkage and selection operator (LASSO) (Tibshirani, 1996), elastic-net 

(ENET) (Zou and Hastie, 2005), classification and regression tree (CART) (Loh, 2011), 

random forest (Breiman, 2001), and XGBoost (Chen and Guestrin, 2016). R packages for 

implementation of each algorithm and corresponding hyperparameters that we tuned are 

summarized in Table S1. A Super Learner ensemble was then calculated as a weighted sum 

of predictions from these eight algorithms by

ψensemble(E) = ∑m
M amψm(E)

where ψm(E) is the prediction from the m-th algorithm (m = 1, 2, 3, …, M) and am is 

the corresponding weight. In our study, we log-transformed blood lead concentration, and 

standardized each continuous variable due to scaling requirements for some algorithms 

and coded categorical variables as dummy variables. Bone lead concentrations were not log-

transformed because the distributions were not skewed, and worse prediction performances 

were observed if log-transformed bone lead concentrations were used to train the models.

Wang et al. Page 5

Chemosphere. Author manuscript; available in PMC 2023 October 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We used nested cross-validation to find the optimal weighted Super Learner predictions 

and evaluate their performance (Fig. 1). Nested cross-validation is a method for optimizing 

model hyperparameters and selecting models that seek to address the problem of overfitting 

the training dataset (Cawley and Talbot, 2010). This procedure consists of two cross-

validation loops– outer and inner loops. Fifteen-fold cross--validation was used for the 

outer loop, and ten-fold was for the inner loop. The optimal weight am for each algorithm 

in the Super Learner was estimated in the inner loop. Briefly, cross-validated predictions 

for each algorithm were calculated in each validation set. A constrained regression was 

then fitted in which the observed bone lead was dependent and predictions for different 

algorithms were independent variables, and an optimal convex combination of regression 

coefficients was determined, corresponding to am for each algorithm such that each am ≥ 0 

and ∑M
m am = 1 . This procedure of obtaining optimal weighted Super Learner prediction by 

subdividing the data into distinct training and validation sets was repeated 15 times (outer 

loop), and the performance of each Super Learner prediction was assessed with an additional 

layer of cross-validation (testing sets) that has not been used in the training process. Cross-

validated mean-squared errors (CV-MSE) for the Super Learner and component algorithms 

predictions were calculated in each testing set and then averaged over all 15 testing sets. We 

also calculated the Pearson’s correlation coefficients and the Lin’s concordance correlation 

coefficients (CCC) (Lin, 1989) to evaluate the agreement between observed and predicted 

bone lead concentrations in the testing sets. The R package “SuperLearner” (Van der Laan et 

al., 2007) was used to predict the bone lead concentrations in our study.

2.5. Predicted bone lead concentrations and blood pressure in NHANES

To test the prediction models’ applicability in other studies where bone lead concentrations 

were not measured, we evaluated the associations between predicted bone lead 

concentrations and blood pressure, using data from NHANES, a representative sample of the 

civilian, non-institutionalized U.S. population. The study sample consists of 18,796 adults 

aged 20 years and older from 8 continuous cycles (1999–2000 to 2013–2014) who had no 

missing information on predictors used in bone lead prediction models and blood pressure. 

Linear regression models were used to examine the associations between blood pressure 

(systolic blood pressure, SBP, and diastolic blood pressure, DBP) and predicted patella/tibia 

lead concentrations (from full model and reduced model) while adjusting for age, gender, 

race/ethnicity, education, NHANES survey cycles, smoking status, cumulative cigarette 

smoking (pack-year), body mass index, and alcohol consumption. If participants reported 

current use of anti-hypertensive medicines, a constant of 10 mmHg and 5 mmHg were 

added to their SBP and DBP, respectively, according to an established method to correct 

for medication use (Tobin et al., 2005). We also examined blood lead for comparison. 

Blood lead was log-transformed because the association was close to log-linear. Adjusted 

differences in SBP and DBP were computed for an interquartile range (IQR) increase in 

each lead variable. We further stratified associations between blood pressure and predicted 

bone lead by gender and age (≥50 vs. < 50 years) to assess the potential effect modifications 

and generalizability of our prediction models, considering that they were built in men 

majorly aged 50 years and older.
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2.6. Sensitivity analyses

Several sensitivity analyses were conducted to test the robustness of our findings. First, 

we log2-transformed predicted bone lead and blood lead concentrations to better compare 

the effect size in relation to blood pressure in NHANES. The effect size was interpreted 

as changes in blood pressure of per doubling increase in each lead metal concentration. 

Second, we additionally adjusted for the bone lead predictors, including job type, weight, 

height, and waist circumference, in the associations of blood pressure with blood lead 

and predicted bone lead concentrations. Finally, to explore the impact of missing values 

on the associations between lead exposures and blood pressure, we conducted multiple 

imputations by chained equations (Azur et al., 2011) to impute missing values. All analyses 

were conducted using R, version 4.0.5 (www.R-project.org) and the prediction models are 

available (https://github.com/XinWangUmich/Bone-Lead-Prediction-Models).

3. Results

3.1. Prediction models

Distributions of bone lead concentrations and their candidate predictors in the NAS are 

shown in Table 1. The mean (range) age of 695 study participants was 67.1 (48–94) years. 

Most participants had a high school degree or higher (89.8%) and had either former or 

current smoked (69.2%). The mean (standard deviation, SD) of lead concentration was 31.1 

(19.5) μg/g for patella lead, 21.6 (13.3) μg/g for tibia lead, and 5.0 (1.9) μg/dL for blood 

lead.

Fig. 2 summarizes the results of predictor selection by the Boruta algorithm that predictors 

showing higher mean importance z-score (green boxes) than the highest shadow variable 

(blue box) are retained as “important” predictors of bone lead concentrations. A total of 

10 predictors were selected for patella lead, with the most important predictor of blood 

lead concentration, followed by age, education, weight, BMI, job type, waist circumference, 

cumulative cigarette smoking (pack-year), height, and smoking status. For the tibia lead, 

the same 10 predictors were selected. At the same time, two additional variables—serum 

phosphorus and serum hematocrit, were identified as tentative predictors, which have a 

higher but not statistically significant mean importance Z-score than the maximum value 

of the shadow variables. We only kept serum phosphorus because it had a higher median 

importance Z-score than that of the highest shadow variable. Thus, 11 predictors were 

selected for tibia lead, with the most important predictors being age, followed by blood lead 

concentration.

Fig. S1 shows the performance of Super Learner prediction, together with its 8 component 

algorithms, for the patella lead prediction, assessed by the CV-MSEs averaged across 

15 testing sets. The Super Learner predictions outperformed all individual component 

algorithms in both full and reduced models, with CV-MSE (standard error, SE) of 253.1 

(27.0) for the full model and 253.0 (26.6) for the reduced model, slightly better than the 

best performed individual algorithms-random forest, with CV-MSE (standard error, SE) of 

255.8 (27.1) for the full model and 253.6 (26.7) for the reduced model. Similarly, the Super 

Learner showed the best performance in tibia lead concentration prediction compared to 
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any component algorithms (Fig. S2). For the individual algorithms predicting tibia lead, the 

generalized additive model had the highest individual performance in the full model, while 

the random forest was the best in the reduced model.

The full model and reduced model for patella lead predictions show similar agreement 

measures (Fig. 3). The Pearson’s correlation coefficients between observed and predicted 

patella lead was 0.580 for both the full and reduced model. The CCC was 0.482 for the 

full model and 0.476 for the reduced model. Similar performance in terms of agreement 

measures between the full and reduced models was also observed for tibia lead predictions 

(Fig. S3). The Pearson’s correlation coefficient was 0.519, and CCC was 0.416 for the full 

model. For the reduced model, Pearson’s correlation coefficient was 0.518, and CCC was 

0.416.

3.2. Application to NHANES

The distributions of bone lead predictors in the NHANES were summarized in Table S2. The 

study sample consists of 18,796 participants (10,060 mens and 8736 womens) with a mean 

(range) age of 42.5 (20–85 and above) years. The mean (SD) of blood lead concentration 

was 1.7 (1.8) μg/dL. Predicted bone lead concentrations were shown in Table S3. Mean (SD) 

of predicted patella lead concentration was 32.0 (12.6) μg/g for the full model and 31.9 

(11.9) μg/g for the reduced model. Mean (SD) of predicted tibia lead concentration was 21.9 

(8.3) μg/g for the full model and 21.9 (8.4) μg/g for the reduced model. Participants aged 50 

years and older had higher predicted patella and tibia lead concentrations than those younger 

than 50 years.

Positive associations of SBP with blood and predicted bone lead concentrations 

were observed (Table 2). After adjusting for age, gender, race/ethnicity, education, 

NHANES survey cycles, smoking status, cumulative cigarette smoking, BMI, and alcohol 

consumption, an IQR increase in bone lead concentrations was associated with 1.45 (95% 

CI: 0.96, 1.93) mmHg higher SBP for predicted patella lead from the full model, 1.98 (95% 

CI: 1.16, 2.80) mmHg for predicted patella lead from the reduced model, 2.09 (95% CI: 

1.55, 2.63) mmHg for predicted tibia lead from the full model, and 2.21 (95% CI: 1.69, 

2.74) mmHg for predicted tibia lead from the reduced model. By comparison, an IQR 

increase in log-transformed blood lead concentration was associated with 0.91 (95% CI: 

0.57, 1.25) mmHg higher SBP. Stronger positive associations between predicted bone lead 

concentrations and SBP were observed in women except for predicted patella lead from 

the full model. Participants aged 50 years and older showed stronger associations between 

predicted bone lead and SBP than those aged 50 years and younger.

Similar to SBP, positive associations were found between lead concentrations and DBP, 

where effects of predicted bone lead were stronger than blood lead (Table S4). In stratified 

analysis by gender, stronger positive associations between predicted bone lead and DBP 

were found in women. In stratified analysis by age, positive associations between predicted 

bone lead and DBP were observed in participants aged 50 years and older. By contrast, 

significant associations were only observed with predicted patella and tibia lead from 

reduced models in those younger than 50 years.
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3.3. Sensitivity analyses

In sensitivity analyses, stronger positive associations between predicted bone lead 

concentrations and blood pressure were observed than blood lead in models where all 

lead concentrations were log2-transformed (Table S5 and Table S6). Additional adjustments 

for job type, weight, height, and waist circumference (Table S7 and Table S8) and pooled 

analysis of imputed datasets (Table S9 and Table S10) did not alter the associations.

4. Discussion

To allow for the testing of cumulative lead exposure with health effects in studies where 

direct bone lead measurements are not possible, this study derived prediction models 

for the bone lead concentration—the biomarker for cumulative lead exposure, using the 

Super Learner’s ensemble machine learning algorithm. The reduced model, which included 

blood lead concentration, age, education, job type, BMI, smoking status, and cumulative 

cigarette pack-years as predictors, showed reasonable performance in the validation datasets 

as demonstrated by the goodness of fit of models and agreement between predicted and 

measured bone lead concentrations. When we compared this reduced model to the full 

model incorporating more predictors, we found no differences in prediction performance. 

We further applied the prediction models to the NHANES and found that predicted 

bone lead concentrations were associated with higher blood pressure, whereas blood lead 

concentrations were not, which agrees with previous findings in the NAS that bone lead but 

not blood lead was associated with elevated blood pressure (Cheng et al., 2001).

To our knowledge, this study was the first to derive the bone lead prediction models 

based on blood lead and a few predictors that are available in most population-based 

studies using the flexible machine learning approach—Super Learner. More than 12 years 

ago, Park et al. (2009) constructed the prediction models for a similar purpose using the 

NAS data. However, the bone lead prediction models derived previously were based on 

linear regression, and assumptions underlying this parametric approach may be violated, 

as the relationship between bone lead concentrations and their determinants may be highly 

complex and hence unlikely to be accurately captured by a linear equation. The Super 

Learner algorithm we used here embraced the possible complex relationships and has 

been shown to achieve the prediction performance as good as optimum (but unknown) 

algorithm in the different scenarios by stacking predictions from a wide range of modeling 

algorithms (Van der Laan et al., 2007). In addition, the previous prediction model with the 

highest performance included health outcomes as predictors (for example, blood pressure), 

precluding the testing of predicted lead exposure with those health outcomes. Our Super 

Learner based bone lead prediction model did not use these variables as predictors, 

which allows for more expanded possible future research directions. The overall prediction 

performances of our models are not very high, indicating a moderate signal to noise ratio 

in the dataset. However, improvement in the performance of both patella and tibia lead 

predictions with our Super Learner based bone lead prediction model (r = 0.58 for patella 

lead and r = 0.52 for tibia lead) was achieved compared the performance of the previously 

constructed linear regression (r = 0.50 for patella lead and r = 0.43 for tibia lead) in the same 

NAS dataset (Park et al., 2009). We used Super Learner to build the prediction models as 
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other studies will have a different setting and strength of the signal, but Super Learner will 

pick out the best predictions data adaptively. Future studies may be able to achieve further 

advances in the prediction performances.

Blood lead and age were the two most important predictors of bone lead concentration 

in the Boruta predictor selection (Fig. 2). When exposed to lead in the environment, 

blood and other soft tissues comprise the first receptacle of absorbed lead. Over weeks, 

lead in these compartments continues to circulate, with some being excreted via urine 

(and, to some extent bile), but about 10% accumulating into various skeletal locations for 

decades throughout mineral deposition. From there, lead can then be mobilized over ensuing 

years through bone resorption and remodeling (Tsaih et al., 2001). In the aging population 

with elevated bone resorption, blood lead can capture recent external exposure as well as 

endogenous exposure of the released lead from bone into the circulation (Wang et al., 2019). 

The high predictor importance of blood lead and age was supported by the strong positive 

associations of blood lead and age with bone lead concentrations in other cohorts where both 

blood and bone lead data were available (Korrick et al., 2002; Kosnett et al., 1994). To note, 

blood lead showed the highest importance for patella lead, while age was identified as the 

most important predictor for tibia lead in our analysis. This could be explained by different 

bone compositions, i.e., patella lead is mainly made up of trabecular bone which resorbs 

more rapidly than the cortical bone in the tibia (Hu et al., 2007). Thus, a closer relationship 

between blood lead and patella lead is expected, given patella lead’s role as a marker of the 

internal mobilizable lead reserves. By contrast, the strong association between age and tibia 

lead suggests tibia lead’s role as an indicator of lifetime cumulative lead exposure as well 

as a potential marker of the birth cohort effect associated with an age cohort that had much 

higher exposure as young adults than the young adults of today.

Our analysis detected positive associations between predicted bone lead concentrations 

and blood pressure in the NHANES datasets, adding to the literature that cumulative lead 

exposure contributes to elevated blood pressure in the U.S. general population (Navas-Acien 

et al., 2008). The larger magnitudes of the association for the predicted bone lead than 

that of blood lead highlight the practical value of our prediction models, in particular, in 

the examination of associations between cumulative lead exposure and health outcomes. 

Notably, predicted patella lead concentrations from the reduced model were more strongly 

associated with blood pressure than the patella lead predicted from the full model. It 

should be pointed out that more highly correlated predictors (weight, height, BMI, and 

waist circumference) were included in the full patella prediction model because the Boruta 

tended to select all-relevant predictors rather than a minimal subset (Kursa and Rudnicki, 

2010), and this could lead to greater prediction error due to the potential overfitting. When 

predicted bone lead is treated as exposure in the associations with health outcomes, the 

prediction error in the bone lead can be recast as measurement error in the exposure, 

resulting in downward bias (i.e., towards null) in the estimates of the effect coefficient of 

the bone lead. Another possible explanation could be that weight, height, BMI, and waist 

circumference are risk factors for high blood pressure, and they could also be affected by 

lead exposure (Wang et al., 2018). Thus, the downward bias in the bone lead effect estimates 

could happen.

Wang et al. Page 10

Chemosphere. Author manuscript; available in PMC 2023 October 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In the stratified analysis, much larger effect estimates of predicted bone lead were observed 

in participants aged 50 years and older. This could be explained by the fact that older people 

are more susceptible to risk factors of elevated blood pressure (Setters and Holmes, 2017) 

and also that age was one of the most important predictors in our bone lead prediction 

models and participants aged 50 years and older showed higher concentrations of predicted 

bone lead than those younger than 50. Stronger associations between predicted bone lead 

and blood pressure were also observed in women compared to men. Gender is another 

potentially important predictor of bone lead concentrations given the accelerated bone 

resorption rate in postmenopausal women, leading to increased lead mobilization from 

bone into the circulation (Korrick et al., 2002). However, gender was not included in our 

prediction models due to the design of NAS of a cohort of men. Thus, the associations 

between bone lead and blood pressure in women could still be underestimated. Possible 

biological mechanisms underlying the associations between lead exposure and blood 

pressure include oxidative stress, inflammation, renin-angiotensin system dysfunction, and 

impaired autonomic nervous system function (Navas-Acien et al., 2007).

Our prediction models did not account for all potential determinants of bone lead 

concentrations (Table 1). Blood lead, sociodemographic factors, lifestyle factors, and 

BMI showed the highest predictor importance in the Boruta algorithm, suggesting 

that sociodemographic and lifestyle factors and BMI provides more information about 

cumulative lead exposure than other blood biomarkers when blood lead concentration 

is available. Furthermore, the reduced model with only seven predictors showed similar 

goodness-of-fit as the full model and minimized the risk of potential overfitting, as discussed 

previously. This way, we developed the most parsimonious, rather than complete, model for 

bone lead concentration prediction, leveraging the most critical factors required to estimate 

the cumulative lead exposure, which boosts the applicability of our model in epidemiologic 

studies where extensive blood biomarkers and clinical phenotypes are not available.

The main strength of our study is the application of the Super Learner, for the first time, 

to model the bone lead concentration in a flexible way. Hyperparameters for the machine 

learning algorithms embedded in the Super Learner were also tuned for better prediction 

performance (Wong et al., 2019). Nevertheless, this study has several limitations. First, our 

prediction models were derived from a cohort of middle-aged-to-elderly White men. The 

bone lead concentrations in other populations, such as women, non-White race groups, or 

different age groups, may not be accurately predicted. Our models should also be used 

cautiously to predict bone lead concentrations in populations with higher bone turnover 

rates, for example, pregnant women or postmenopausal women. Separate models trained in 

women and younger populations with different sets of predictors will give a more accurate 

estimate of bone lead concentrations and less biased associations with health outcomes 

in the corresponding subpopulations in the future. Additionally, due to data unavailability, 

other determinants of lead exposures, such as family income (Mahaffey et al., 1982), degree 

of urbanization of the place of residence (Mahaffey et al., 1982), and environmental and 

dietary sources (Gump et al., 2020; Hanna-Attisha et al., 2016), were not included in 

the building of prediction models. Inclusion of such predictors could potentially improve 

the model prediction performance. Finally, when training the models for predicting bone 

lead concentrations in other settings or other chemical exposures, it should be noted 
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that hyperparameters and performances of machine learning algorithms may vary due to 

differences in sample size, number and types of variables, and the relationships between 

predictors and outcomes.

5. Conclusions

In summary, this study provides the prediction models for bone lead concentration, a 

marker of cumulative lead exposure, based on blood lead concentration and other standard 

predictors including age, education, job type, BMI, smoking status, and cumulative cigarette 

pack-years using the Super Learner algorithm in the NAS. The positive associations between 

predicted bone lead concentration and blood pressure in the NHANES suggest the practical 

value of the prediction models in evaluating the health effects of cumulative lead exposure 

in studies where bone lead measurements are not available. Future studies are needed to 

train the model in different populations, for example, women, non-white racial groups, and 

younger populations, to further increase the prediction accuracy.
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Abbreviations:
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CART classification and regression tree

CCC concordance correlation coefficients

CV-MSE cross-validated mean-squared errors

DBP diastolic blood pressure

ENET elastic-net

IQR interquartile range

KXRF K-shell X-ray fluorescence

LASSO least absolute shrinkage and selection operator

LOD limit of detection
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NAS Normative Aging Study

NHANES National Health and Nutrition Examination Survey

SBP systolic blood pressure

References

Aro AC, Todd AC, Amarasiriwardena C, Hu H, 1994. Improvements in the calibration of 109Cd 
K x-ray fluorescence systems for measuring bone lead in vivo. Phys. Med. Biol 39, 2263–2271. 
[PubMed: 15551552] 

Azur MJ, Stuart EA, Frangakis C, Leaf PJ, 2011. Multiple imputation by chained equations: what is 
it and how does it work? Int. J. Methods Psychiatr. Res 20, 40–49. 10.1002/MPR.329. [PubMed: 
21499542] 

Bakulski KM, Hu H, Park SK, 2020. Lead, cadmium and Alzheimer’s disease. In: Genetics, 
Neurology, Behavior, and Diet in Dementia. Academic Press, pp. 813–830. 10.1016/
B978-0-12-815868-5.00051-7.

Barry PS, Mossman DB, 1970. Lead concentrations in human tissues. Br. J. Ind. Med 27, 339–351. 
[PubMed: 5488693] 

Breiman L, 2001. Random forests. Mach. Learn 45, 5–32. 10.1023/A:1010933404324.

Cawley GC, Talbot NLC, 2010. On over-fitting in model selection and subsequent selection bias in 
performance evaluation. J. Mach. Learn. Res 11, 2079–2107. 10.5555/1756006.

Chen T, Guestrin C, 2016. XGBoost: a scalable tree boosting system. In: Proc. 22nd ACM SIGKDD 
Int. Conf. Knowl. Discov. Data Min, pp. 785–794. 10.1145/2939672.

Cheng Y, Schwartz J, Sparrow D, Aro A, Weiss ST, Hu H, 2001. Bone lead and blood lead levels in 
relation to baseline blood pressure and the prospective development of hypertension the normative 
aging study. Am. J. Epidemiol 153, 164–171. 10.1093/aje/153.2.164. [PubMed: 11159162] 

Di Q, Amini H, Shi L, Kloog I, Silvern R, Kelly J, Sabath MB, Choirat C, Koutrakis P, Lyapustin 
A, Wang Y, Mickley LJ, Schwartz J, 2019. An ensemble-based model of PM2.5 concentration 
across the contiguous United States with high spatiotemporal resolution. Environ. Int 130, 104909 
10.1016/J.ENVINT.2019.104909. [PubMed: 31272018] 

Ding N, Wang X, Tucker KL, Weisskopf MG, Sparrow D, Hu H, Park SK, 2018. Dietary patterns, 
bone lead and incident coronary heart disease among middle-aged to elderly men. Environ. Res 
168, 222–229. 10.1016/j.envres.09.035. [PubMed: 30317107] 

Ding N, Wang X, Weisskopf MG, Sparrow D, Schwartz J, Hu H, Park SK, 2016. Lead-Related Genetic 
Loci, cumulative lead exposure and incident coronary heart disease: the normative aging study. 
PLoS One 11, 1–18. 10.1371/journalpone.0161472.

Frank JJ, Poulakos AG, Tornero-Velez R, Xue J, 2019. Systematic review and meta-analyses of lead 
(Pb) concentrations in environmental media (soil, dust, water, food, and air) reported in the United 
States from 1996 to 2016. Sci. Total Environ 694, 133489 10.1016/J.SCITOTENV.2019.07.295. 
[PubMed: 31756826] 

Gump BB, Hruska B, Parsons PJ, Palmer CD, MacKenzie JA, Bendinskas K, Brann L, 2020. Dietary 
contributions to increased background lead, mercury, and cadmium in 9–11 Year old children: 
accounting for racial differences. Environ. Res 185, 109308 10.1016/J.ENVRES.2020.109308. 
[PubMed: 32222635] 

Hanna-Attisha M, LaChance J, Sadler RC, Champney Schnepp A, 2016. Elevated blood lead levels in 
children associated with the flint drinking water crisis: a spatial analysis of risk and public health 
response. Am. J. Publ. Health 106, 283–290. 10.2105/AJPH.2015.303003.

Hoerl AE, Kennard RW, 1970. ridge regression: biased estimation for nonorthogonal problems. 
Technometrics 12, 55–67. 10.1080/00401706.1970.10488634.

Hu H, Aro A, Rotnitzky A, 1995. Bone lead measured by X-ray fluorescence: epidemiologic methods. 
Environ. Health Perspect 103 (Suppl. 1), 105–110.

Wang et al. Page 13

Chemosphere. Author manuscript; available in PMC 2023 October 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Hu H, Shih R, Rothenberg S, Schwartz BS, 2007. The epidemiology of lead toxicity in adults: 
measuring dose and consideration of other methodologic issues. Environ. Health Perspect 115, 
455–462. 10.1289/EHP.9783. [PubMed: 17431499] 

Korrick SA, Schwartz J, Tsaih S-W, Hunter DJ, Aro A, Rosner B, Speizer FE, Hu H, 2002. Correlates 
of bone and blood lead levels among middle-aged and elderly women. Am. J. Epidemiol 156, 
335–343. [PubMed: 12181103] 

Kosnett MJ, Becker CE, Osterloh JD, Kelly TJ, Pasta DJ, 1994. Factors influencing bone lead 
concentration in a suburban community assessed by noninvasive K X-ray fluorescence. JAMA 
271, 197–203. 10.1001/JAMA.1994.03510270043037. [PubMed: 8277545] 

Kursa MB, Rudnicki WR, 2010. Feature selection with the Boruta package. J. Stat. Software 36, 1–13. 
10.18637/JSS.V036.I11.

Lanphear BP, Rauch S, Auinger P, Allen RW, Hornung RW, 2018. Low-level lead exposure and 
mortality in US adults: a population-based cohort study. Lancet Public Health 3, e177–e184. 
10.1016/S2468-2667(18)30025-2. [PubMed: 29544878] 

Lin LI-K, 1989. A concordance correlation coefficient to evaluate reproducibility. Biometrics 45, 268. 
10.2307/2532051.

Loh W-Y, 2011. Classification and regression trees. Wiley Interdiscip. Rev. Data Min. Knowl. Discov 
1, 14–23. 10.1002/WIDM.8.

Mahaffey KR, Annest JL, Roberts J, Murphy RS, 1982. National estimates of blood lead levels: United 
States, 1976-1980: association with selected demographic and socioeconomic factors. N. Engl. J. 
Med 307, 573–579. 10.1056/NEJM198209023071001. [PubMed: 7110203] 

Navas-Acien A, Guallar E, Silbergeld EK, Rothenberg SJ, 2007. Lead exposure and cardiovascular 
disease: a systematic review. Environ. Health Perspect 115, 472–482. [PubMed: 17431501] 

Navas-Acien A, Schwartz BS, Rothenberg SJ, Hu H, Silbergeld EK, Guallar E, 2008. Bone 
lead levels and blood pressure endpoints: a meta-analysis. Epidemiology 19, 496–504. 10.1097/
EDE.0B013E31816A2400. [PubMed: 18414090] 

Park SK, Elmarsafawy S, Mukherjee B, Spiro A, Vokonas PS, Nie H, Weisskopf MG, Schwartz J, Hu 
H, Hu H, 2010. Cumulative lead exposure and age-related hearing loss: the VA Normative Aging 
Study. Hear. Res 269, 48–55. 10.1016/j.heares.2010.07.004. [PubMed: 20638461] 

Park SK, Mukherjee B, Xia X, Sparrow D, Weisskopf MG, Nie H, Hu H, 2009. Bone lead 
level prediction models and their application to examine the relationship of lead exposure and 
hypertension in the third national health and nutrition examination survey. J. Occup. Environ. Med 
51, 1422–1436. 10.1097/JOM.0B013E3181BF6C8D. [PubMed: 19952788] 

Payton M, Riggs KM, Spiro A, Weiss ST, Hu H, 1998. Relations of bone and blood lead to 
cognitive function: the VA normative aging study. Neurotoxicol. Teratol 20, 19–27. 10.1016/
S0892-0362(97)00075-5. [PubMed: 9511166] 

Pirkle JL, Brody DJ, Gunter EW, Kramer RA, Paschal DC, Flegal KM, Matte TD, 1994. The decline 
in blood lead levels in the United States: the national health and nutrition examination surveys 
(NHANES). JAMA 272, 284–291. 10.1001/JAMA.1994.03520040046039. [PubMed: 8028141] 

Setters B, Holmes HM, 2017. Hypertension in the older adult. Prim. Care 44, 539. 10.1016/
J.POP.2017.05.002.

Tibshirani R, 1996. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B 58, 267–
288. 10.2307/2346178.

Tobin MD, Sheehan NA, Scurrah KJ, Burton PR, 2005. Adjusting for treatment effects in studies of 
quantitative traits: antihypertensive therapy and systolic blood pressure. Stat. Med 24, 2911–2935. 
10.1002/sim.2165. [PubMed: 16152135] 

Tsaih SW, Korrick S, Schwartz J, Lee ML, Amarasiriwardena C, Aro A, Sparrow D, Hu H, 2001. 
Influence of bone resorption on the mobilization of lead from bone among middle-aged and 
elderly men: the Normative Aging Study. Environ. Health Perspect 109, 995–999. [PubMed: 
11675263] 

Van der Laan MJ, Polley EC, Hubbard AE, 2007. Super learner. Stat. Appl. Genet. Mol. Biol 6 
10.2202/1544-6115.1309.

Verner MA, Gaspar FW, Chevrier J, Gunier RB, Sjödin A, Bradman A, Eskenazi B, 2015. 
Increasing sample size in prospective birth cohorts: back-extrapolating prenatal levels of persistent 

Wang et al. Page 14

Chemosphere. Author manuscript; available in PMC 2023 October 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



organic pollutants in newly enrolled children. Environ. Sci. Technol 49, 3940–3948. 10.1021/
ACS.EST.5B00322/SUPPL_FILE/ES5B00322_SI_001.PDF. [PubMed: 25698216] 

Wang X, Kim D, Tucker KL, Weisskopf MG, Sparrow D, Hu H, Park SK, 2019. Effect of dietary 
sodium and potassium intake on the mobilization of bone lead among middle-aged and older 
men: the veterans affairs normative aging study. Nutrients 11, 2750. 10.3390/nullll2750. [PubMed: 
31766133] 

Wang X, Mukherjee B, Park SK, 2018. Associations of cumulative exposure to heavy metal mixtures 
with obesity and its comorbidities among U.S. adults in NHANES 2003–2014. Environ. Int 121, 
683–694. https://doi.org/10.1016/j.envint.2018.09.035. [PubMed: 30316184] 

Weisskopf MG, Jain N, Nie H, Sparrow D, Vokonas P, Schwartz J, Hu H, 2009. A prospective 
study of bone lead concentration and death from all causes, cardiovascular diseases, and cancer 
in the department of veterans affairs normative aging study. Circulation 120, 1056–1064. 10.1161/
CIRCULATIONAHA.108.827121. [PubMed: 19738141] 

Wilker E, Korrick S, Nie LH, Sparrow D, Vokonas P, Coull B, Wright RO, Schwartz J, Hu H, 2011. 
Longitudinal changes in bone lead levels: the VA normative aging study. J. Occup. Environ. Med 
53, 850–855. 10.1097/JOM.0b013e31822589a9. [PubMed: 21788910] 

Wong J, Manderson T, Abrahamowicz M, Buckeridge DL, Tamblyn R, 2019. Can hyperparameter 
tuning improve the performance of a super learner? A Case Study. Epidemiology 30, 521–531. 
10.1097/EDE.0000000000001027. [PubMed: 30985529] 

Wood SN, 2017. Generalized additive models : an introduction with R. In: Generalized Additive 
Models: an Introduction with R, second ed. Chapman and Hall/CRC. 10.1201/9781315370279. 
second ed.

Zou H, Hastie T, 2005. Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser 67, 
301–320.

Wang et al. Page 15

Chemosphere. Author manuscript; available in PMC 2023 October 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://doi.org/lO.lOl6/j.envint.2018.09.035


HIGHLIGHTS

• Bone lead is an indicator of cumulative lead exposure.

• Bone lead measurement is limited in large population-based studies due to 

technical availability and expense.

• We developed prediction models for bone lead concentrations using Super 

Learner.

• The model provides reasonable accuracy and can be used to evaluate health 

effects of cumulative lead exposure.
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Fig. 1. 
Flow chart of predicted bone lead concentration model development, validation, and 

application. Normative Aging Study (NAS); National Health and Nutrition Examination 

Survey (NHANES).
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Fig. 2. 
Predictor importance for A) patella lead, and B) tibia lead in the Boruta algorithm. Ten 

variables (green) were identified as important predictors for patella lead, including blood 

lead concentration, age, education, weight, body mass index, job type, waist circumference, 

cumulative cigarette smoking (pack-year), height, and smoking status. Serum phosphorus 

was additionally identified as an important predictor for tibia lead. A predictor was 

considered important if it had a significantly higher mean importance Z-score than the 

maximum value of the shadow variables (blue). Otherwise, a predictor (red) was excluded if 

it had a significantly lower mean importance Z-score than the maximum value of the shadow 

variables. Two tentative variables (yellow), which has higher but not statistically significant 

mean importance Z-score than the maximum value of the shadow variables, were identified 

as tentative predictors for tibia lead. We only kept serum phosphorus because it had a higher 

median importance Z-score than the shadow variable.
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Fig. 3. 
Validation of the patella lead prediction A. full model and B. reduced model in outer 

cross-validated testing sets. The solid lines drawn on the plots showed indicate the 

regression line from the simple linear regression. The dashed lines indicate the equiangular 

observed–predicted line. R: the Pearson correlation coefficient; CCC: the Concordance 

Correlation Coefficient. Full model included blood lead concentration (log-transformed), 

age, education, job type, weight, height, body mass index, waist circumference, smoking 

status, and cumulative cigarette smoking (pack-year). Reduced model included blood lead 

concentration (log-transformed), age, education, job type, body mass index, smoking status, 

and cumulative cigarette smoking (pack-year).
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Table 1

Distributions of lead concentrations and their potential determinants in the Normative Aging Study (NAS) (N 

= 695). All participants were White men.

Characteristics Mean (SD) or n (%) Range

Bone lead concentrations

Patella lead (μg/g) 31.1 (19.5) −9 – 165

Tibia lead (μg/g) 21.6 (13.3) −5 – 126

Candidate predictors

Blood lead (μg/dL) 5.0 (1.9) 0.7–27.9

Age (year) 67.1 (7.2) 48–94

Height (m) 1.7 (0.1) 1.5–2.0

Weight (kg) 83.6 (13.0) 52.7–128.5

Body mass index (kg/m2) 27.8 (3.7) 16.7–42.4

Waist circumference (cm) 98.2 (9.6) 70.1–129.7

Serum calcium (mg/dL) 9.6 (0.4) 8.3–11.3

Serum phosphorus (mg/dL) 3.1 (0.5) 1.9–4.6

Total cholesterol (mg/dL) 228 (37) 145–438

High-density lipoprotein (mg/dL) 48 (13) 15–131

Triglyceride (mg/dL) 150 (79) 24–470

Hematocrit (%) 434 (3) 29–52

Alcohol consumption (gram/day) 13 (18) 0–104

Cumulative cigarette (pack-year) 22 (26) 0–136

Smoking status

 Never 214 (30.8)

 Former 418 (60.1)

 Current 63 (9.1)

Education

 High school dropout 71 (10.2)

 High school of some college 425 (61.2)

 College and above 199 (28.6)

Job type

 White collar 367 (52.8)

 Non-white collar 328 (47.2)
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